Demonstrating Heisenberg-limited unambiguous phase estimation without adaptive measurements
نویسندگان
چکیده
We derive, and experimentally demonstrate, an interferometric scheme for unambiguous phase estimation with precision scaling at the Heisenberg limit, that does not require adaptive measurements. That is, with no prior knowledge of the phase, we can obtain an estimate of the phase with a standard deviation that is only a small constant factor larger than the minimum physically allowed value. Our scheme resolves the phase ambiguity that exists when multiple passes through a phase shift, or NOON states, are used to obtain improved phase resolution. Like a recently introduced adaptive technique [Higgins et al 2007 Nature 450 393], our experiment uses multiple applications of the phase shift on single photons. By not requiring adaptive measurements, but rather using a predetermined measurement sequence, the present scheme is both conceptually simpler and significantly easier to implement. Additionally, we demonstrate a simplified adaptive scheme that also surpasses the standard quantum limit for single passes. PACS numbers: 03.67.-a, 42.50.St, 03.65.Ta Heisenberg-limited phase estimation without adaptive measts 2
منابع مشابه
Metrology with entangled states
It is well known that classical states of light exhibit shot noise, characteristic of independent or uncorrelated particles. For phase estimation problems, this leads to a shot-noise limited uncertainty of 1/sqrt[N], where N is the number of particles detected. It is also well known that the shot-noise limit is not fundamental: squeezed states and entangled states can be used for sub-shot-noise...
متن کاملPhase estimation for thermal Gaussian states
We give the optimal bounds on the phase-estimation precision for mixed Gaussian states in the single-copy and many-copy regimes. Specifically, we focus on displaced thermal and squeezed thermal states. We find that while for displaced thermal states an increase in temperature reduces the estimation fidelity, for squeezed thermal states a larger temperature can enhance the estimation fidelity. T...
متن کاملEfficient Bayesian Phase Estimation.
We introduce a new method called rejection filtering that we use to perform adaptive Bayesian phase estimation. Our approach has several advantages: it is classically efficient, easy to implement, achieves Heisenberg limited scaling, resists depolarizing noise, tracks time-dependent eigenstates, recovers from failures, and can be run on a field programmable gate array. It also outperforms exist...
متن کاملEstimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power
Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...
متن کاملPhase variance of squeezed vacuum states
We consider the problem of estimating the phase of squeezed vacuum states within a Bayesian framework. We derive bounds on the average Holevo variance for an arbitrary number N of uncorrelated copies. We find that it scales with the mean photon number n, as dictated by the Heisenberg limit, i.e., as n−2, only for N 4. For N 4 this fundamental scaling breaks down and it becomes n−N/2. Thus, a si...
متن کامل